Numerical study on the flexural behaviour of normal- and high-strength concrete beams reinforced with GFRP bar, using different amounts of transverse reinforcement
نویسندگان
چکیده
This study was numerically focused on the non-linear behaviour of glass fibre reinforced polymer (GFRP) concrete beams with different amounts transverse reinforcement. The mid-span deflection beam cannot effectively be restricted using higher amount flexural GFRP bars, owing to their low deformability factor. So, use high reinforcement ratio is proposed decrease and crack widths. Following this, effect required carefully assess better understand beams. main goal this evaluate deflection, stress distribution failure mechanism normal- high-strength ratios (GFRP bar) finite element (FE) analysis. results revealed a fair agreement between developed FE models experimental Besides, mean value experimental-to-predicted load 0.96, average coefficient variation 2.69 %. Moreover, truss action generated diagonal compression in cracked tension reinforcement, resulted decreasing deflection. In addition, for all specimens without highest intensities were observed bottom component at service load. However, by increasing from ultimate, caused propagate some parts near sides component. Furthermore, presence distributing intensity normal-strength more than that either or ultimate
منابع مشابه
Numerical Study on the Flexural Behaviour of Concrete Beams Reinforced by GFRP Bars
Enhancement of the response of reinforced concrete (RC) beams using fiber-reinforced polymer (FRP) reinforcement bars has become a popular structural technique over the past two decades due to the well-known advantages of FRP composites including their high strength-to-weight ratio and excellent corrosion resistance. Thisstudy presents n...
متن کاملFlexural Testing of High Strength Reinforced Concrete Beams Strengthened with CFRP Sheets
The objective of this study is to investigate the effectiveness of externally bonded CFRP sheets to increase the flexural strength of reinforced high strength concrete (HSC) beams. Four-point bending flexural tests to complete failure on six concrete beams, strengthened with different layouts of CFRP sheets were conducted. Three-dimensional nonlinear finite element (FE) models were adopted by A...
متن کاملNumerical investigation of GFRP bars contribution on performance of concrete structural elements
In this study, twenty glass fiber reinforced polymer (GFRP) reinforced concrete specimens were modelled using finite element method to predict the effect of GFRP compressive bars on the flexural strength and ductility of GFRP reinforced concrete beams. Also, the contribution of GFRP longitudinal rebars to the load-carrying capacity of reinforced concrete columns is determined. The concrete elas...
متن کاملFlexural Behavior of Lightweight Concrete Beams Reinforced with GFRP Bars and Effects of the Added Micro and Macro Fiber
This study evaluated the effect of macro steel fiber (SF), micro glass fiber (GF) and micro polypropylene fiber (PF) in lightweight aggregate concrete, (LWAC) beams reinforced with glass fiber reinforced polymer (GFRP) bars. Firstly, concrete mixtures with different volume fractions of GF, PF and SF were tested up to compressive strength, then determine the optimum fiber content GF, PF and SF a...
متن کاملthe effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)
cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structures
سال: 2021
ISSN: ['2352-0124']
DOI: https://doi.org/10.1016/j.istruc.2021.09.077